Transductive Relational Classification in the Co-training Paradigm
Abstract
Consider a multi-relational database, to be used for classification, that contains a large number of unlabeled data. It follows that the cost of labeling such data is prohibitive. Transductive learning, which learns from labeled as well as from unlabeled data already known at learning time, is highly suited to address this scenario. In this paper, we construct multi-views from a relational database, by considering different subsets of the tables as contained in a multi-relational database. These views are used to boost the classification of examples in a co-training schema. The automatically generated views allow us to overcome the independence problem that negatively affect the performance of co-training methods. Our experimental evaluation empirically shows that co-training is beneficial in the transductive learning setting when mining multi-relational data and that our approach works well with only a small amount of labeled data.
Autore Pugliese
Tutti gli autori
-
APPICE A.;MALERBA D.;CECI M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
0302-9743
ISBN
978-3-642-31536-7
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
5
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social