Transductive Inference for Class-Membership Propagation in Web Ontologies

Abstract

Considering the increasing availability of structured machine processable knowledge in the context of the Semantic Web, only relying on purely deductive inference may be limiting. This work proposes a new method for similarity-based class-membership prediction in Description Logic knowledge bases. The underlying idea is based on the concept of propagating class-membership information among similar individuals; it is non-parametric in nature and characterised by interesting complexity properties, making it a potential candidate for large-scale transductive inference. We also evaluate its effectiveness with respect to other approaches based on inductive inference in SW literature.


Tutti gli autori

  • D'AMATO C.;ESPOSITO F.;FANIZZI N.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

0302-9743

ISBN

978-3-642-38287-1


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

4

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile