The Challenges of Sentiment Detection in the Social Programmer Ecosystem

Abstract

A recent research trend has emerged to study the role of affect in in the social programmer ecosystem, by applying sentiment analysis to the content available in sites such as GitHub and Stack Overflow. In this paper, we aim at assessing the suitability of a state-of-the-art sentiment analysis tool, already applied in social computing, for detecting affective expressions in Stack Overflow. We also aim at verifying the construct validity of choosing sentiment polarity and strength as an appropriate way to operationalize affective states in empirical studies on Stack Overflow. Finally, we underline the need to overcome the limitations induced by domain-dependent use of lexicon that may produce unreliable results.


Tutti gli autori

  • CALEFATO F.;LANUBILE F.;NOVIELLI N.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2015

ISSN

Non Disponibile

ISBN

978-1-4503-3818-9


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile