The analysis of myotonia congenita mutations discloses functional clusters of amino acids within CBS2 domain and C-terminal peptide of ClC-1 channel
Abstract
Myotonia congenita (MC) is a skeletal muscle hyper-excitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severity and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide sub-domains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function and provides information to develop new antimyotonic drugs. This article is protected by copyright. All rights reserved.
Autore Pugliese
Tutti gli autori
-
ALTAMURA C.;ALTAMURA C.;SAHBANI D.R.;CONTE D.;DESAPHY J.F.;CARRATU' M.R.;IMBRICI P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2018
ISSN
1059-7794
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social