Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching

Abstract

In this paper, a simple parameter switching (PS) methodology is proposed for sustaining the stable dynamics of a fractional-order chaotic financial system. This is achieved by switching a controllable parameter of the system, within a chosen set of values and for relatively short periods of time. The effectiveness of the method is confirmed from a computer-aided approach, and its applications to chaos control and anti-control are demonstrated. In order to obtain a numerical solution of the fractional-order financial system, a variant of the Grünwald–Letnikov scheme is used. Extensive simulation results show that the resulting chaotic attractor well represents a numerical approximation of the underlying chaotic attractor, which is obtained by applying the average of the switched values. Moreover, it is illustrated that this approach is also applicable to the integer-order financial system.


Autore Pugliese

Tutti gli autori

  • GARRAPPA R.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

0898-1221

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

23

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile