Supervised Learning and Distributional Semantic Models for Super-Sense Tagging
Abstract
Super-sense tagging is the task of annotating each word in a text with a super-sense, i.e. a general concept such as animal, food or person, coming from the general semantic taxonomy defined by the WordNet lexicographer classes. Due to the small set of involved concepts, the task is simpler than Word Sense Disambiguation, which identifies a specific meaning for each word. The small set of concepts allows machine learning algorithms to achieve good performance when coping with the problem of tagging. However, machine learning algorithms suffer from data-sparseness. This problem becomes more evident when lexical features are involved, because test data can contain words with low frequency (or completely absent) in training data. To overcome the sparseness problem, this paper proposes a supervised method for super-sense tagging which incorporates information coming from a distributional space of words built on a large corpus. Results obtained on two standard datasets, SemCor and SensEval-3, show the effectiveness of our approach.
Autore Pugliese
Tutti gli autori
-
CAPUTO A.;SEMERARO G.;BASILE P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
0302-9743
ISBN
978-3-319-03523-9
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social