Supervised Learning and Distributional Semantic Models for Super-Sense Tagging

Abstract

Super-sense tagging is the task of annotating each word in a text with a super-sense, i.e. a general concept such as animal, food or person, coming from the general semantic taxonomy defined by the WordNet lexicographer classes. Due to the small set of involved concepts, the task is simpler than Word Sense Disambiguation, which identifies a specific meaning for each word. The small set of concepts allows machine learning algorithms to achieve good performance when coping with the problem of tagging. However, machine learning algorithms suffer from data-sparseness. This problem becomes more evident when lexical features are involved, because test data can contain words with low frequency (or completely absent) in training data. To overcome the sparseness problem, this paper proposes a supervised method for super-sense tagging which incorporates information coming from a distributional space of words built on a large corpus. Results obtained on two standard datasets, SemCor and SensEval-3, show the effectiveness of our approach.


Tutti gli autori

  • CAPUTO A.;SEMERARO G.;BASILE P.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

0302-9743

ISBN

978-3-319-03523-9


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile