Summarization for Geographically Distributed Data Streams
Abstract
We consider distributed computing environments where geo-referenced sensors feed a unique central server with numeric and uni-dimensional data streams. Knowledge discovery from these geographically distributed data streams poses several challenges including the requirement of data summarization in order to store the streamed data in a central server with a limited memory. We propose an enhanced segmentation algorithm in order to group data sources in the same spatial cluster if they stream data which evolve according to a close trajectory over the time. A trajectory is constructed by tracking only data points which represent a change of trend in the associated spatial cluster. Clusters of trajectories are discovered on-the-fly and stored in the database. Experiments prove effectiveness and accuracy of our approach.
Autore Pugliese
Tutti gli autori
-
APPICE A.;MALERBA D.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
0302-9743
ISBN
978-3-642-15392-1
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
14
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social