Spectral Properties and Conservation Laws in Mimetic Finite Difference Methods for PDEs

Abstract

The Mimetic Finite Difference (MFD) methods for PDEs mimic crucial properties of mathematical systems: duality and self-adjointness of differential operators, conservation laws and properties of the solution on general polytopal meshes. In this article the structure and the spectral properties of the linear systems derived by the spatial discretization of diffusion problem are analysed. In addition, the numerical approximation of parabolic equations is discussed where the MFD approach is used in the space discretization while implicit #-method and explicit Runge Kutta Chebyshev schemes are used in time discretization. Moreover, we will show how the numerical solution preserves certain conservation laws of the theoretical solution.


Autore Pugliese

Tutti gli autori

  • LOPEZ L.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2016

ISSN

0377-0427

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

9

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile