Spectral Properties and Conservation Laws in Mimetic Finite Difference Methods for PDEs
Abstract
The Mimetic Finite Difference (MFD) methods for PDEs mimic crucial properties of mathematical systems: duality and self-adjointness of differential operators, conservation laws and properties of the solution on general polytopal meshes. In this article the structure and the spectral properties of the linear systems derived by the spatial discretization of diffusion problem are analysed. In addition, the numerical approximation of parabolic equations is discussed where the MFD approach is used in the space discretization while implicit #-method and explicit Runge Kutta Chebyshev schemes are used in time discretization. Moreover, we will show how the numerical solution preserves certain conservation laws of the theoretical solution.
Anno di pubblicazione
2016
ISSN
0377-0427
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
9
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social