Slant immersions in $C_5$-manifolds

Abstract

Odd-dimensional non anti-invariant slant submanifolds of an α- Kenmotsu manifold are studied. We relate slant immersions into a Kähler manifold with suitable slant submanifolds of an α-Kenmotsu manifold. More generally, in the framework of Chinea-Gonzalez, we specify the type of the almost contact metric structure induced on a slant submanifold, then stating a local classification theorem. The case of austere immersions is discussed. This helps in proving a reduction theorem of the codimension. Finally, slant submanifolds which are generalized Sasakian space-forms are described.


Autore Pugliese

Tutti gli autori

  • FALCITELLI M.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2017

ISSN

1220-3874

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile