Shape annotation by semi-supervised clustering
Abstract
Image annotation is an important and challenging task when managing large image collections. In this paper, a fuzzy shape annotation approach for semi-automatic image annotation is presented. A fuzzy clustering process guided by partial supervision is applied to shapes represented by Fourier descriptors in order to derive a set of shape prototypes representative of a number of semantic categories. Next, prototypes are manually annotated by attaching textual labels related to semantic categories. Based on the labeled proto-types, a new shape is automatically labeled by associating a fuzzy set that provides membership degrees of the shape to all semantic categories. The proposed annotation approach provides an innovative indexing method for shape-based image retrieval. Indeed, shape prototypes represent an inter-mediate indexing level that allows a faster retrieval process since a query is matched against prototypes, instead of the whole shape database, resulting in a speed up of the retrieval. The proposed approach is tested on synthetic and real-word images in order to show its suitability.
Autore Pugliese
Tutti gli autori
-
FANELLI A.M.;CASTELLANO G.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
0020-0255
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
12
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social