Scalable Learning of Entity and Predicate Embeddings for Knowledge Graph Completion
Abstract
Knowledge Graphs (KGs) are a widely used formalism for representing knowledge in the Web of Data. We focus on the problem of link prediction, i.e. predicting missing links in large knowledge graphs, so to discover new facts about the world. Representation learning models that embed entities and relation types in continuous vector spaces recently were used to achieve new state-of-the-art link prediction results. A limiting factor in these models is that the process of learning the optimal embedding vectors can be really time-consuming, and might even require days of computations for large KGs. In this work, we propose a principled method for sensibly reducing the learning time, while converging to more accurate link prediction models. Furthermore, we employ the proposed method for training and evaluating a set of novel and scalable models. Our extensive evaluations show significant improvements over state-of-the-art link prediction methods on several datasets.
Autore Pugliese
Tutti gli autori
-
D'AMATO C.;ESPOSITO F.;FANIZZI N.;MINERVINI P.M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2016
ISSN
Non Disponibile
ISBN
978-1-5090-0287-0
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
8
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social