Rule Generalization Strategies in Incremental Learning of Disjunctive Concepts
Abstract
Symbolic Machine Learning systems and applications, especially when applied to real-world domains, must face the problem of concepts that cannot be captured by a single denition, but require several alternate definitions, each of which covers part of the full concept extension. This problem is particularly relevant for incremental systems, where progressive covering approaches are not applicable, and the learn- ing and refinement of the various definitions is interleaved during the learning phase. In these systems, not only the learned model depends on the order in which the examples are provided, but it also depends on the choice of the specific definition to be refined. This paper proposes different strategies for determining the order in which the alternate definitions of a concept should be considered in a generalization step, and evaluates their performance on a real-world domain dataset
Autore Pugliese
Tutti gli autori
-
PAZIENZA A.;ESPOSITO F.;FERILLI S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2015
ISSN
0302-9743
ISBN
978-331921541-6
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social