Rotation Number and Exponential Dichotomy for Linear Hamiltonian Systems: From Theoretical to Numerical Results
Abstract
The paper considers the rotation number for a family of linear nonautonomous Hamiltonian systems and its relation with the exponential dichotomy concept. We propose numerical techniques to compute the rotation number and we employ them to infer when a given system enjoys or not an exponential dichotomy. Comparisons with QR-based techniques for exponential dichotomy will give new insights on the structure of the spectrum for the one-dimensional quasi-periodic Schrödinger operator. Experiments on the two dimensional Schrödinger equation will be presented as well.
Anno di pubblicazione
2013
ISSN
1040-7294
ISBN
Non Disponibile
Numero di citazioni Wos
1
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
2
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social