Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia
Abstract
Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α-/- cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α-/- mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients.
Autore Pugliese
Tutti gli autori
-
GRANO M.;COLUCCI S.C.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
0027-8424
ISBN
Non Disponibile
Numero di citazioni Wos
54
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
58
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social