Recognizing the User Social Attitude in Multimodal Interaction in Smart Environments
Abstract
Ambient Intelligence aims at promoting an effective, natural and personalized interaction with the environment services. In order to provide the most appropriate answer to the user requests, an Ambient Intelligence system should model the user by considering not only the cognitive ingredients of his mental state, but also extra-rational factors such as affect, engagement, attitude, and so on. This paper describes a study aimed at building a multimodal framework for recognizing the social response of users during interaction with embodied agents in the context of ambient intelligence. In particular, we describe how we extended a model for recognizing the social attitude in text-based dialogs by adding two additional knowledge sources: speech and gestures. Results of the study show that these additional knowledge sources may help in improving the recognition of the users' attitude during interaction.
Autore Pugliese
Tutti gli autori
-
DE CAROLIS B.;NOVIELLI N.;FERILLI S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
0302-9743
ISBN
978-3-642-34897-6
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social