Quasi uniformity for the abstract Neumann antimaximum principle and applications with a priori estimates

Abstract

In this paper we prove a general result giving the maximum and the antimaximum principles in a unitary way for linear operators of the form $L+\lambda I$, provided that 0 is an eigenvalue of L with associated constant eigenfunctions. To this purpose, we introduce a new notion of "quasi"-uniform maximum principle, named k-uniform maximum principle: it holds for lambda belonging to certain neighborhoods of 0 depending on the fixed positive multiplier k > 0 which selects the good class of right-hand-sides. Our approach is based on a $L^infinity$ - $L^p$ estimate for some related problems. As an application, we prove some generalization and new results for elliptic problems and for time periodic parabolic problems under Neumann boundary conditions


Autore Pugliese

Tutti gli autori

  • FRAGNELLI G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

0022-247X

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

1

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile