Quadrature formulas descending from BS Hermite spline quasi-interpolation
Abstract
Two new classes of quadrature formulas associated to the BS Boundary Value Methods are discussed. The first is of Lagrange type and is obtained by directly applying the BS methods to the integration problem formulated as a (special) Cauchy problem. The second descends from the related BS Hermite quasi-interpolation approach which produces a spline approximant from Hermite data assigned on meshes with general distributions. The second class formulas is also combined with suitable finite difference approximations of the necessary derivative values in order to define corresponding Lagrange type formulas with the same accuracy. (C) 2012 Elsevier B.V. All rights reserved.
Anno di pubblicazione
2012
ISSN
0377-0427
ISBN
Non Disponibile
Numero di citazioni Wos
8
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
9
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social