Probabilistic Model for Accuracy Estimation in Approximate Monodimensional Analyses
Abstract
Abstract: - Approximate query processing is often based on analytical methodologies able to provide fast responses to queries. As a counterpart, the approximate answers are affected with a small quantity of error. Nowadays, these techniques are being exploited in data warehousing environments, because the queries devoted to extract information involve high-cardinality relations and, therefore, require a high computational time. Approximate answers are profitably used in the decision making process, where the total precision is not needed. Thus, it is important to provide decision makers with accuracy estimates of the approximate answers; that is, a measure of how much reliable the approximate answer is. Here, a probabilistic model is presented for providing such an accuracy measure when the analytical methodology used for decisional analyses is based on polynomial approximation. This probabilistic model is a Bayesian network able to estimate the relative error of the approximate answers.
Autore Pugliese
Tutti gli autori
-
LEFONS E.;TANGORRA F.;DI TRIA F.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
1109-2750
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social