Predictive regional trees to supplement geo-physical random fields

Abstract

Nowadays ubiquitous sensor stations are deployed to measure geophysical fields for several ecological and environmental processes. Although these fields are measured at the specific location of stations, geo-statistical problems demand for inference processes to supplement, smooth and standardize recorded data. We study how predictive regional trees can supplement data sampled periodically in an ubiquitous sensing scenario. Data records that are similar one to each other are clustered according to a rectangular decomposition of the region of analysis; a predictive model is associated to the region covered by each cluster. The cluster model depicts the spatial variation of data over a map, the predictive model supplements any unknown record that is recognized belong to a cluster region. We illustrate an incremental algorithm to yield time-evolving predictive regional trees that account for the fact that the statistical properties of the recorded data may change over time. This algorithm is evaluated with spatio-temporal data collections.


Tutti gli autori

  • APPICE A.;MALERBA D.;PRAVILOVIC S.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

2194-5357

ISBN

978-3-319-00968-1


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile