Phase transitions and metastability in the distribution of the bipartite entanglement of a large quantum system
Abstract
We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity) and study the finite size corrections to the saddle point solution.
Autore Pugliese
Tutti gli autori
-
FACCHI P.;PASCAZIO S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
1050-2947
ISBN
Non Disponibile
Numero di citazioni Wos
33
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
33
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social