Phase transitions and metastability in the distribution of the bipartite entanglement of a large quantum system

Abstract

We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity) and study the finite size corrections to the saddle point solution.


Tutti gli autori

  • FACCHI P.;PASCAZIO S.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

1050-2947

ISBN

Non Disponibile


Numero di citazioni Wos

33

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

33

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile