Perturbed asymptotically linear problems
Abstract
The aim of this paper is investigating the existence of solutions of the semilinear elliptic problem \[\left\{\begin{array}{ll} \displaystyle{-\Delta u\ =\ p(x, u) + \varepsilon g(x, u)} & \mbox{ in } \Omega,\\ \displaystyle{u=0} & \mbox{ on } \partial\Omega,\\ \end{array} ight.\] where $\Omega$ is an open bounded domain of $\R^N$, $\varepsilon\in\R$, $p$ is subcritical and asymptotically linear at infinity and $g$ is just a continuous function. Even when this problem has not a variational structure on $H^1_0(\Omega)$, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is ``stable'' under small perturbations, in particular obtaining multiplicity results if $p$ is odd, both in the non-resonant and in the resonant case.
Autore Pugliese
Tutti gli autori
-
SALVATORE A.;CANDELA A.M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
0373-3114
ISBN
Non Disponibile
Numero di citazioni Wos
5
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
5
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social