On the positive semigroups generated by Fleming-Viot type differential operators

Abstract

In this paper we study a class of degenerate second-order elliptic differential operators, often referred to as Fleming-Viot type operators, in the framework of function spaces defined on the d-dimensional hypercube Qd of Rd, d ≥ 1. By making mainly use of techniques arising from approximation theory, we show that their closures generate positive semigroups both in the space of all continuous functions and in weighted Lp-spaces. In addition, we show that the semigroups are approximated by iterates of certain polynomial type positive linear operators, which we introduce and study in this paper and which generalize the Bernstein-Durrmeyer operators with Jacobi weights on [0, 1]. As a consequence, after determining the unique invariant measure for the approximating operators and for the semigroups, we establish some of their regularity properties along with their asymptotic behaviours.


Tutti gli autori

  • ALTOMARE F.;CAPPELLETTI MONTANO M.;LEONESSA V.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2019

ISSN

1534-0392

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile