On the positive semigroups generated by Fleming-Viot type differential operators
Abstract
In this paper we study a class of degenerate second-order elliptic differential operators, often referred to as Fleming-Viot type operators, in the framework of function spaces defined on the d-dimensional hypercube Qd of Rd, d ≥ 1. By making mainly use of techniques arising from approximation theory, we show that their closures generate positive semigroups both in the space of all continuous functions and in weighted Lp-spaces. In addition, we show that the semigroups are approximated by iterates of certain polynomial type positive linear operators, which we introduce and study in this paper and which generalize the Bernstein-Durrmeyer operators with Jacobi weights on [0, 1]. As a consequence, after determining the unique invariant measure for the approximating operators and for the semigroups, we establish some of their regularity properties along with their asymptotic behaviours.
Autore Pugliese
Tutti gli autori
-
ALTOMARE F.;CAPPELLETTI MONTANO M.;LEONESSA V.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2019
ISSN
1534-0392
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social