On the geometry of almost contact metric manifolds of Kenmotsu type

Abstract

We analyze the Riemannian geometry of almost alpha-Kenmotsu manifolds, focusing on local symmetries and on some vanishing conditions for the Riemannian curvature. If the characteristic vector field of an almost alpha-Kenmotsu structure belongs to the so-called (kappa,mu)'-nullity distribution, $\kappa < -\alpha^2$, then the Riemannian curvature is completely determined. These manifolds provide a special case of a wider class of almost alpha-Kenmotsu manifolds, for which an operator h' associated to the structure is eta-parallel and has constant eigenvalues. All these manifolds are locally warped products. Finally, we give a local classification of almost alpha-Kenmotsu manifolds, up to D-homothetic deformations. Under suitable conditions, they are locally isomorphic to Lie groups.


Autore Pugliese

Tutti gli autori

  • DILEO G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2011

ISSN

0926-2245

ISBN

Non Disponibile


Numero di citazioni Wos

5

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

5

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile