On Markov operators preserving polynomials
Abstract
The paper is concerned with a special class of positive linear operators acting on the space C(K) of all continuous functions defined on a convex compact subset K of R^d, having non-empty interior. Actually, this class consists of all positive linear operators T on C(K) which leave invariant the polynomials of degree at most $1$ and which, in addition, map polynomials into polynomials of the same degree. Among other things, we discuss the existence of such operators in the special case where K is strictly convex by also characterizing them within the class of positive projections. In particular we show that such operators exist if and only if the boundary of K is an ellipsoid. Furthermore, a characterization of balls of R^d in terms of a special class of them is furnished. Additional results and illustrative examples are presented as well.
Autore Pugliese
Tutti gli autori
-
ALTOMARE F.;CAPPELLETTI MONTANO M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
0022-247X
ISBN
Non Disponibile
Numero di citazioni Wos
6
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
4
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social