On differential operators associated with Markov operators
Abstract
In this paper we introduce and study a new class of elliptic second-order differential operators on a convex compact subset K of R^d, which are associated with a Markov operator T on C(K) and which degenerate on a suitable subset of K containing its extreme points. Among other things, we show that the closures of these operators generate Markov semigroups. Moreover, we prove that these semigroups can be approximated by means of iterates of suitable positive linear operators, which are referred to as the Bernstein-Schnabl operators associted with T. As a consequence we show that the semigroups preserve polynomials of a given degree as well as Holder continuity which gives rise some spatial regularity properties of the solutions of the relevant evolution equations.
Autore Pugliese
Tutti gli autori
-
ALTOMARE F.;CAPPELLETTI MONTANO M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
0022-1236
ISBN
Non Disponibile
Numero di citazioni Wos
9
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
8
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social