Numerical Solution of Discontinuous Differential Systems: Approaching the Discontinuity Surface from One-Side
Abstract
We consider the numerical integration of discontinuous differential systems of ODEs of the type: x' = f_1(x) when h(x) < 0 and x'= f_2(x) when h(x) > 0, and with f1 \neq f2 for x ∈ Σ, where Σ := {x: h(x) = 0} is a smooth co-dimension one discontinuity surface. Often, f1 and f2 are defined on the whole space, but there are applications where f1 is not defined above Σ and f2 is not defined below Σ. For this reason, we consider explicit Runge–Kutta methods which do not evaluate f1 above Σ (respectively, f2 below Σ). We exemplify our approach with subdiagonal explicit Runge–Kutta methods of order up to 4. We restrict attention only to integration up to the point where a trajectory reaches Σ.
Anno di pubblicazione
2013
ISSN
0168-9274
ISBN
Non Disponibile
Numero di citazioni Wos
18
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
18
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social