Nonnegative Matrix Factorizations for Intelligent Data Analysis
Abstract
We discuss Non-negative Matrix Factorization (NMF) techniques from the point of view of Intelligent Data Analysis (IDA), i.e. the intelligent application of human expertise and computational models for advanced data analysis. As IDA requires human involvement in the analysis process, the understandability of the results coming from computational models has a prominent importance. We therefore review the latest developments of NMF that try to fulfill the understandability requirement in several ways. We also describe a novel method to decompose data into user-defined --- hence understandable --- parts by means of a mask on the feature matrix, and show the method's effectiveness through some numerical examples.
Autore Pugliese
Tutti gli autori
-
MENCAR C.;CASALINO G.;CASALINO G.;DEL BUONO N.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2016
ISSN
1860-4862
ISBN
978-3-662-48330-5; 978-3-662-48331-2
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
2
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social