Multiplicative perturbations of the Laplacian and related approximation problems, to appear in Journal of Evolution Equations

Abstract

Of concern are multiplicative perturbations of the Laplacian acting on weighted spaces of continuous functions on R^N. It is proved that such differential operators, defined on their maximal domains, are pre-generators of positive quasicontractive C_0-semigroups of operators that fulfil the Feller property. Accordingly, these semigroups are associated with a suitable probability transition function and hence with a Markov process on R^N. An approximation formula for these semigroups is also stated in terms of iterates of integral operators that generalize the classical Gauss-Weierstrass operators. Some applications of such approximation formula are finally shown concerning both the semigroups and the associated Markov processes.


Autore Pugliese

Tutti gli autori

  • ALTOMARE F.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2011

ISSN

1424-3199

ISBN

Non Disponibile


Numero di citazioni Wos

3

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

3

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile