Mining Linked Open Data through Semi-supervised Learning Methods based on Self-training

Abstract

The paper tackles the problem of mining linked open data. The inherent lack of knowledge caused by the openworld assumption made on the semantic of the data model determines an abundance of data of uncertain classification. We present a semi-supervised machine learning approach. Specifically a self-training strategy is adopted which iteratively uses labeled instances to predict a label also for unlabeled instances. The approach is empirically evaluated with an extensive experimentation involving several different algorithms demonstrating the added value yielded by a semi-supervised approach over standard supervised methods.


Tutti gli autori

  • D'AMATO C.;ESPOSITO F.;FANIZZI N.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2012

ISSN

Non Disponibile

ISBN

978-0-7695-4859-3


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

6

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile