Markov processes and generalized Schroedinger equations

Abstract

Starting from the forward and backward infinitesimal generators of bilateral, time-homogeneous Markov processes, the self-adjoint Hamiltonians of the generalized Schroedinger equations are first introduced by means of suitable Doob transformations. Then, by broadening with the aid of the Dirichlet forms the results of the Nelson stochastic mechanics, we prove that it is possible to associate bilateral, and time-homogeneous Markov processes to the wave functions stationary solutions of our generalized Schroedinger equations. Particular attention is then paid to the special case of the Levy-Schroedinger (\LS) equations and to their associated Levy-type Markov processes, and to a few examples of Cauchy background noise.


Autore Pugliese

Tutti gli autori

  • CUFARO PETRONI N.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2011

ISSN

0022-2488

ISBN

Non Disponibile


Numero di citazioni Wos

1

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile