Lipschitz contractions, unique ergodicity and asymptotics of Markov semigroups
Abstract
We are mainly concerned with the asymptotic behaviour of both discrete and continuous semigroups of Markov operators acting on the space C(X) of all continuous functions on a compact metric space X. We establish a simple criterion under which such semigroups admit a unique invariant probability measure $\mu$ on X that determines their limit behaviour on C(X) and on L^p(X,\mu). The criterion involves the behaviour of the semigroups on Lipschitz continuous functions and on the relevant Lipschitz seminorms. Finally, we discuss some applications concerning the Kantorovich operators on the hypercube and the Bernstein-Durrmeyer operator with Jacobi weights on [0,1]. As a consequence we determine the limit of the iterates of these operators as well as of their corresponding Markov semigroups whose generators fall in the class of Fleming-Viot differential operators arising in population genetics.
Autore Pugliese
Tutti gli autori
-
ALTOMARE F.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
1972-6724
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
11
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social