Leveraging the LinkedIn Social Network Data for Extracting Content-based User Profiles
Abstract
In the last years, hundreds of social networks sites have been launched with both professional (e.g., LinkedIn) and non-professional (e.g., MySpace, Facebook) orientations. This resulted in a renewed information overload problem, but it also provided a new and unforeseen way of gathering useful, accurate and constantly updated information about user interests and tastes. Content-based recommender systems can leverage the wealth of data emerging by social networks for building user profiles in which representations of the user interests are maintained. The idea proposed in this paper is to extract content-based user profiles from the data available in the LinkedIn social network, to have an image of the users' interests that can be used to recommend interesting academic research papers. A preliminary experiment provided interesting results which deserve further attention.
Autore Pugliese
Tutti gli autori
-
MUSTO C.;NARDUCCI F.;SEMERARO G.;de GEMMIS M.;LOPS P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
Non Disponibile
ISBN
978-1-4503-0683-6
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
10
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social