Learning to Propagate Knowledge in Web Ontologies

Abstract

The increasing availability of structured machine-processable knowl- edge in the W EB OF D ATA calls for machine learning methods to support stan- dard pattern matching and reasoning based services (such as query-answering and inference). Statistical regularities can be efficiently exploited to overcome the limitations of the inherently incomplete knowledge bases distributed across the Web. This paper focuses on the problem of predicting missing class-memberships and property values of individual resources in Web ontologies. We propose a transductive inference method for inferring missing properties about individuals: given a class-membership/property value prediction problem, we address the task of identifying relations encoding similarities between individuals, and efficiently propagating knowledge across their relations


Tutti gli autori

  • D'AMATO C.;FANIZZI N.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

1613-0073

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

2

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile