Learning Iterative Strategies in Multi-Expert Systems using SVMs for Digit Recognition
Abstract
This paper presents three different learning iterative strategies, in a multi-expert system. In first strategy entire new dataset is used. In second strategy each single classifier selects new samples starting from those on which it performs a misclassification. Finally, the collective behavior of classifiers is studied to select the most profitable samples for knowledge base updating. The experimental results provide a comparison of three approaches under different operating conditions and feedback process. A classifier SVM and four different combination techniques were used by considering the CEDAR (handwritten digit) database. It is shown how results depend by the iterations on the feedback process, as well as by the specific combination decision schema and by data distribution.
Autore Pugliese
Tutti gli autori
-
IMPEDOVO D.;PIRLO G.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
0302-9743
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
4
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social