Intelligent Twitter Data Analysis Based on Nonnegative Matrix Factorizations

Abstract

In this paper we face the problem of intelligently analyze Twitter data. We propose a novel workflow based on Nonnegative Matrix Factorization (NMF) to collect, organize and analyze Twitter data. The proposed workflow firstly fetches tweets from Twitter (according to some search criteria) and processes them using text mining techniques; then it is able to extract latent features from tweets by using NMF, and finally it clusters tweets and extracts human-interpretable topics. We report some preliminary experiments demonstrating the effectiveness of the proposed workflow as a tool for Intelligent Data Analysis (IDA), indeed it is able to extract and visualize interpretable topics from some newly collected Twitter datasets, that are automatically grouped together according to these topics. Furthermore, we numerically investigate the influence of different initializations mechanisms for NMF algorithms on the factorization results when very sparse Twitter data are considered. The numerical comparisons confirm that NMF algorithms can be used as clustering method in place of the well known k-means.


Tutti gli autori

  • CASTIELLO C.;MENCAR C.;CASALINO G.;CASALINO G.;DEL BUONO N.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2017

ISSN

0302-9743

ISBN

978-331962391-7


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

2

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile