Intelligent Text Processing Techniques for Textual-Profile Gene Characterization
Abstract
We present a suite of Machine Learning and knowledge-based components for textual-profile based gene prioritization. Most genetic diseases are characterized by many potential candidate genes that can cause the disease. Gene expression analysis typically produces a large number of co-expressed genes that could be potentially responsible for a given disease. Extracting prior knowledge from text-based genomic information sources is essential in order to reduce the list of potential candidate genes to be then further analyzed in laboratory. In this paper we present a suite of Machine Learning algorithms and knowledge-based components for improving the computational gene prioritization process. The suite includes basic Natural Language Processing capabilities, advanced text classification and clustering algorithms, robust information extraction components based on qualitative and quantitative keyword extraction methods and exploitation of lexical knowledge bases for semantic text processing.
Autore Pugliese
Tutti gli autori
-
ESPOSITO F.;FERILLI S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
Non Disponibile
ISBN
978-3-642-14570-4
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social