Intelligent Text Processing Techniques for Textual-Profile Gene Characterization

Abstract

We present a suite of Machine Learning and knowledge-based components for textual-profile based gene prioritization. Most genetic diseases are characterized by many potential candidate genes that can cause the disease. Gene expression analysis typically produces a large number of co-expressed genes that could be potentially responsible for a given disease. Extracting prior knowledge from text-based genomic information sources is essential in order to reduce the list of potential candidate genes to be then further analyzed in laboratory. In this paper we present a suite of Machine Learning algorithms and knowledge-based components for improving the computational gene prioritization process. The suite includes basic Natural Language Processing capabilities, advanced text classification and clustering algorithms, robust information extraction components based on qualitative and quantitative keyword extraction methods and exploitation of lexical knowledge bases for semantic text processing.


Autore Pugliese

Tutti gli autori

  • ESPOSITO F.;FERILLI S.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

Non Disponibile

ISBN

978-3-642-14570-4


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile