Integrating Cluster Analysis to the ARIMA Model for Forecasting Geosensor Data
Abstract
Clustering geosensor data is a problem that has recently attracted a large amount of research. In this paper, we focus on clustering geophysical time series data measured by a geo-sensor network. Clusters are built by accounting for both spatial and temporal information of data. We use clusters to produce globally meaningful information from time series obtained by individual sensors. The cluster information is integrated to the ARIMA model, in order to yield accurate forecasting results. Experiments investigate the trade-off between accuracy and efficiency of the proposed algorithm.
Autore Pugliese
Tutti gli autori
-
APPICE A.;MALERBA D.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
0302-9743
ISBN
978-3-319-08325-4
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
9
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social