INSTANCE SELECTION METHOD IN MULTI-EXPERT SYSTEM FOR ONLINE SIGNATURE VERIFICATION
Abstract
In real world applications, signature verification systems should be able to learn continuously, as new signatures providing additional information become available. In fact, new data are not equally relevant for system improvement and a suitable data filtering strategy is generally required. In this context, instance selection is an important task for signature verification systems in order to select useful signatures to be considered for updating system knowledge, removing irrelevant and/or redundant instances from new data. This paper proposes a new feedback-based learning strategy to update the knowledge-base in multi-expert signature verification system. In particular, the collective behavior of classifiers is considered to select the samples for updating system knowledge. Evaluation tests provide a comparison between our (not naïve) approach and the traditional approach, which uses the entire new dataset for feedback. For the purpose, two state-of-the-art classifiers (NB and k-NN) and two abstract level combination techniques (MV and WMV) were used. The experimental results, carried out considering the SUSig database, demonstrate the effectiveness of the new strategy.
Autore Pugliese
Tutti gli autori
-
IMPEDOVO D.;PIRLO G.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
Non Disponibile
ISBN
978-981-4579-62-9
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social