Information Flow in Ising Models on Brain Networks
Abstract
We analyze the information flow in the Ising model on two real networks, describing the brain at the mesoscale, with Glauber dynamics. We find that the critical state is characterized by the maximal amount of information flow in the system, and that this does not happen when the Ising model is implemented on the two-dimensional regular grid. At criticality the system shows signatures of the law of diminishing marginal returns, some nodes showing disparity between incoming and outgoing information. We also implement the Ising model with conserved dynamics and show that there are regions of the systems exhibiting anticorrelation, in spite of the fact that all couplings are positive; this phenomenon may be connected with some evidences in real brains (the default mode network is characterized by anticorrelated components).
Autore Pugliese
Tutti gli autori
-
ANGELINI L.;STRAMAGLIA S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
Non Disponibile
ISBN
978-3-319-08671-2
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social