Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods)
Abstract
Recently, a new family of integrators (Hamiltonian Boundary Value Methods) has been introduced, which is able to precisely conserve the energy function of polynomial Hamiltonian systems and to provide a practical conservation of the energy in the non-polynomial case. We settle the definition and the theory of such methods in a more general framework. Our aim is on the one hand to give account of their good behavior when applied to general Hamiltonian systems and, on the other hand, to find out what are the optimal formulae, in relation to the choice of the polynomial basis and of the distribution of the nodes. Such analysis is based upon the notion of extended collocation conditions and the definition of discrete line integral, and is carried out by looking at the limit of such family of methods as the number of the so called silent stages tends to infinity
Autore Pugliese
Tutti gli autori
-
IAVERNARO F.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
1790-8140
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
85
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social