Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods)

Abstract

Recently, a new family of integrators (Hamiltonian Boundary Value Methods) has been introduced, which is able to precisely conserve the energy function of polynomial Hamiltonian systems and to provide a practical conservation of the energy in the non-polynomial case. We settle the definition and the theory of such methods in a more general framework. Our aim is on the one hand to give account of their good behavior when applied to general Hamiltonian systems and, on the other hand, to find out what are the optimal formulae, in relation to the choice of the polynomial basis and of the distribution of the nodes. Such analysis is based upon the notion of extended collocation conditions and the definition of discrete line integral, and is carried out by looking at the limit of such family of methods as the number of the so called silent stages tends to infinity


Autore Pugliese

Tutti gli autori

  • IAVERNARO F.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

1790-8140

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

85

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile