Generating Sets of Classifiers for the Evaluation of Multi-expert Systems

Abstract

This paper addresses the problem of multiclassifier system evaluation by artificially generated classifiers. For the purpose, a new technique is presented for the generation of sets of artificial abstract-level classifiers with different characteristics at the individual-level (i.e. recognition performance) and at the collective-level (i.e. degree of similarity). The technique has been used to generate sets of classifiers simulating different working conditions in which the performance of combination methods can be estimated. The experimental tests demonstrate the effectiveness of the approach in generating simulated data useful to investigate the performance of combination methods for abstract-level classifiers.


Tutti gli autori

  • IMPEDOVO D.;PIRLO G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

Non Disponibile

ISBN

978-0-7695-4109-9


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

1

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile