Fuzzy-Zoning-Based Classification for Handwritten Characters
Abstract
In zoning-based classification, a membership function defines the way a feature influences the different zones of the zoning method. This paper presents a new class of membership functions, named Fuzzy Membership Functions (FMFs), for zoning-based classification. These FMFs can be easily adapted to the specific characteristics of a classification problem in order to maximize classification performance. In this study, a real-coded genetic algorithm is presented to find, in a single optimization procedure, the optimal FMF together with the optimal zoning described by Voronoi Tessellation. The experimental results, carried out in the field of handwritten digit and character recognition, indicate that optimal FMF performs better than other membership functions based on abstract-level, ranked-level and measurement-level weighting models, which can be found in the literature.
Autore Pugliese
Tutti gli autori
-
IMPEDOVO D.;PIRLO G.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
1063-6706
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
26
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social