Fast Fuzzy Inference in Octave

Abstract

Fuzzy relations are simple mathematical structures that enable a very general representation of fuzzy knowledge, and fuzzy relational calculus offers a powerful machinery for approximate reasoning. However, one of the most relevant limitations of approximate reasoning is the efficiency bottleneck. In this paper, we present two implementations for fast fuzzy inference through relational composition, with the twofold objective of being general and efficient. The two implementations are capable of working on full and sparse representations respectively. Further, a wrapper procedure is capable of automatically selecting the best implementation on the basis of the input features. We implemented the code in GNU Octave because it is a high-level language targeted to numerical computations. Experimental results show the impressive performance gain when the proposed implementation is used.


Autore Pugliese

Tutti gli autori

  • MENCAR C.;PIO G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

1875-6891

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile