Expanding the transfer entropy to identify information circuits in complex systems

Abstract

We propose a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to the informational circuits present in the system, with an informational character which can be associated to the sign of the contribution. For the sake of computational complexity, we adopt the assumption of Gaussianity and use the corresponding exact formula for the conditional mutual information. We report the application of the proposed methodology on two electroencephalography (EEG) data sets.


Autore Pugliese

Tutti gli autori

  • STRAMAGLIA S.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2012

ISSN

1539-3755

ISBN

Non Disponibile


Numero di citazioni Wos

39

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

44

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile