Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem

Abstract

We prove a very general form of the Angle Concavity Theorem, which says that if ((T(t)) defines a one parameter semigroup acting over various L^p spaces (over a fixed measure space), which is analytic in a sector of opening angle heta_p, then the maximal choice for heta_p is aconcave function of 1-1/p. This and related results are applied to get improved estimates on the optimal L^p angle of ellipticity for a parabolic equation of the form {\partial u}{\partial t}=Au, where A is a uniformly elliptic second order partial differential operator with Wentzell or dynamic boundary condition. Similar results are obtained for the higher order equation {\partial u}{\partial t}=(-1)^{m+1}A^m u for all positive integers m.


Autore Pugliese

Tutti gli autori

  • ROMANELLI S.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2010

ISSN

0025-584X

ISBN

Non Disponibile


Numero di citazioni Wos

24

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

26

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile