Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem
Abstract
We prove a very general form of the Angle Concavity Theorem, which says that if ((T(t)) defines a one parameter semigroup acting over various L^p spaces (over a fixed measure space), which is analytic in a sector of opening angle heta_p, then the maximal choice for heta_p is aconcave function of 1-1/p. This and related results are applied to get improved estimates on the optimal L^p angle of ellipticity for a parabolic equation of the form {\partial u}{\partial t}=Au, where A is a uniformly elliptic second order partial differential operator with Wentzell or dynamic boundary condition. Similar results are obtained for the higher order equation {\partial u}{\partial t}=(-1)^{m+1}A^m u for all positive integers m.
Autore Pugliese
Tutti gli autori
-
ROMANELLI S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
0025-584X
ISBN
Non Disponibile
Numero di citazioni Wos
24
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
26
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social