Efficient implementation of Gauss collocation and Hamiltonian boundary value methods

Abstract

In this paper we define an efficient implementation for the family of low-rank energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs), recently defined in the last years. The proposed implementation relies on the particular structure of the Butcher matrix defining such methods, for which we can derive an efficient splitting procedure. The very same procedure turns out to be automatically suited for the efficient implementation of Gauss-Legendre collocation methods, since these methods are a special instance of HBVMs. The linear convergence analysis of the splitting procedure exhibits excellent properties, which are confirmed by a few numerical tests. © 2014 Springer Science+Business Media New York.


Autore Pugliese

Tutti gli autori

  • IAVERNARO F.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

1017-1398

ISBN

Non Disponibile


Numero di citazioni Wos

21

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

25

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile