Discovering trend clusters in sensor data streams

Abstract

Nowadays sensors are deployed everywhere in order to support real-time data applications. They periodically gather information along a number of attribute dimensions (e.g., temperature and humidity). Applications typically require monitoring these data, fast computing aggregates, predicting unknown data, or issuing alarms. To this aim, this paper introduces a recently defined spatio-temporal pattern, called trend cluster, and its multiple applications to summarize, interpolate and detect outliers in sensor network data. As an example, we illustrate the application of trend cluster discovery to air climate data monitoring


Tutti gli autori

  • APPICE A.;MALERBA D.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

Non Disponibile

ISBN

978-88-8467-874-4


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile