Discovering Temporal Patterns of Complex Events in Biosignal Data
Abstract
Analyzing biosignal data is an activity of great importance which can unearth information on the course of a disease. In this paper we propose a temporal data mining approach to analyze these data and acquire knowledge, in the form of temporal patterns, on the physiological events which can frequently trigger particular stages of disease. The proposed approach is realized through a four-stepped computational solution: first, disease stages are determined, then a subset of stages of interest is identified, subsequently physiological time-annotated events which can trigger those stages are detected, finally, patterns are discovered from the extracted events. The application to the sleep sickness scenario is addressed to discover patterns of events, in terms of breathing and cardiovascular system time-annotated disorders, which may trigger particular sleep stages.
Autore Pugliese
Tutti gli autori
-
LOGLISCI C.;MALERBA D.;CECI M.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
Non Disponibile
ISBN
978-88-7488-369-1
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social