Development of a mathematical model for online microextraction by packed sorbent under equilibrium conditions and its application for polycyclic aromatic hydrocarbon determination in water by gas chromatography–mass spectrometry
Abstract
In this work, partition equilibriums and extraction rates of different polycyclic aromatic hydrocarbons (PAHs) have been calculated by multivariate nonlinear regression from data obtained after microextraction by packed sorbent (MEPS) of 16 PAHs from water samples. The MEPS gas chromatography-mass spectrometry (MEPS-GC-MS) method has been optimized investigating the partitioning parameters for a priori prediction of solute sorption equilibrium, recoveries, pre-concentration effects in aqueous and solvent systems. Finally, real samples from sea, agricultural irrigation wells, streams and tap water were analyzed. Detection (S/N ≥ 3) and quantification (S/N ≥ 10) limits were strictly dependent on the volume of water and methanol used during the extraction process. Under the experimental conditions used, these values range from 0.5 to 2 ng L^(-1) and from 1.6 to 6.2 ng L^(-1), respectively. The reasonably good correlation between the logarithm of the partition MEPS-water constants (log K_(meps/water) ) and the logarithm of the octanol-water partition coefficients (log K_(ow) ) (R^2 = 0.807) allows a rough estimation of K ow from the measure of K_(meps/water).
Anno di pubblicazione
2012
ISSN
0021-9673
ISBN
Non Disponibile
Numero di citazioni Wos
10
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
10
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social