Degenerate elliptic operators, Feller semigroups and modified Bernstein-Schnabl operators
Abstract
In this paper we study a class of elliptic second-order differential operators on finite dimensional convex compact sets whose principal part degenerates on a subset of the boundary of the domain. We show that the closures of these operators generate Feller semigroups. Moreover, we approximate these semigroups by iterates of suitable positive linear operators which we also introduce and study in this paper for the first time, and which we refer to as modified Bernstein-Schnabl operators. As a consequence of this approximation we investigate some regularity properties preserved by the semigroup. Finally, we consider the special case of the finite dimensional simplex and the well-known Wright-Fisher diffusion model of gene frequency used in population genetics.
Autore Pugliese
Tutti gli autori
-
ALTOMARE F.;CAPPELLETTI MONTANO M.;DIOMEDE S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
0025-584X
ISBN
Non Disponibile
Numero di citazioni Wos
4
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social